7,431 research outputs found

    Controversies in the Management of Endometrial Carcinoma

    Get PDF
    Endometrial carcinoma is the most common type of female genital tract malignancy. Although endometrial carcinoma is a low grade curable malignancy, the condition of the disease can range from excellent prognosis with high curability to aggressive disease with poor outcome. During the last 10 years many researches have provided some new valuable data of optimal treatments for endometrial carcinoma. Progression in diagnostic imaging, radiation delivery systems, and systemic therapies potentially can improve outcomes while minimizing morbidity. Firstly, total hysterectomy and bilateral salphingo-oophorectomy is the primary operative procedure. Pelvic lymhadenectomy is performed in most centers on therapeutic and prognostic grounds and to individualize adjuvant treatment. Women with endometrial carcinoma can be readily segregated intraoperatively into “low-risk” and “high-risk” groups to better identify those women who will most likely benefit from thorough lymphadenectomy. Secondly, adjuvant therapies have been proposed for women with endometrial carcinoma postoperatively. Postoperative irradiation is used to reduce pelvic and vaginal recurrences in high risk cases. Chemotherapy is emerging as an important treatment modality in advanced endometrial carcinoma. Meanwhile the availability of new hormonal and biological agents presents new opportunities for therapy

    Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks

    Full text link
    We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we can realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed by a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial-linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks and find both the existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.Comment: 14 pages, 6 figure

    Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    Get PDF
    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds
    corecore